2,487 research outputs found

    Sparse Fault-Tolerant BFS Trees

    Full text link
    This paper addresses the problem of designing a sparse {\em fault-tolerant} BFS tree, or {\em FT-BFS tree} for short, namely, a sparse subgraph TT of the given network GG such that subsequent to the failure of a single edge or vertex, the surviving part TT' of TT still contains a BFS spanning tree for (the surviving part of) GG. Our main results are as follows. We present an algorithm that for every nn-vertex graph GG and source node ss constructs a (single edge failure) FT-BFS tree rooted at ss with O(n \cdot \min\{\Depth(s), \sqrt{n}\}) edges, where \Depth(s) is the depth of the BFS tree rooted at ss. This result is complemented by a matching lower bound, showing that there exist nn-vertex graphs with a source node ss for which any edge (or vertex) FT-BFS tree rooted at ss has Ω(n3/2)\Omega(n^{3/2}) edges. We then consider {\em fault-tolerant multi-source BFS trees}, or {\em FT-MBFS trees} for short, aiming to provide (following a failure) a BFS tree rooted at each source sSs\in S for some subset of sources SVS\subseteq V. Again, tight bounds are provided, showing that there exists a poly-time algorithm that for every nn-vertex graph and source set SVS \subseteq V of size σ\sigma constructs a (single failure) FT-MBFS tree T(S)T^*(S) from each source siSs_i \in S, with O(σn3/2)O(\sqrt{\sigma} \cdot n^{3/2}) edges, and on the other hand there exist nn-vertex graphs with source sets SVS \subseteq V of cardinality σ\sigma, on which any FT-MBFS tree from SS has Ω(σn3/2)\Omega(\sqrt{\sigma}\cdot n^{3/2}) edges. Finally, we propose an O(logn)O(\log n) approximation algorithm for constructing FT-BFS and FT-MBFS structures. The latter is complemented by a hardness result stating that there exists no Ω(logn)\Omega(\log n) approximation algorithm for these problems under standard complexity assumptions

    Distributed Computing in the Asynchronous LOCAL model

    Full text link
    The LOCAL model is among the main models for studying locality in the framework of distributed network computing. This model is however subject to pertinent criticisms, including the facts that all nodes wake up simultaneously, perform in lock steps, and are failure-free. We show that relaxing these hypotheses to some extent does not hurt local computing. In particular, we show that, for any construction task TT associated to a locally checkable labeling (LCL), if TT is solvable in tt rounds in the LOCAL model, then TT remains solvable in O(t)O(t) rounds in the asynchronous LOCAL model. This improves the result by Casta\~neda et al. [SSS 2016], which was restricted to 3-coloring the rings. More generally, the main contribution of this paper is to show that, perhaps surprisingly, asynchrony and failures in the computations do not restrict the power of the LOCAL model, as long as the communications remain synchronous and failure-free

    Dynamic and Multi-functional Labeling Schemes

    Full text link
    We investigate labeling schemes supporting adjacency, ancestry, sibling, and connectivity queries in forests. In the course of more than 20 years, the existence of logn+O(loglog)\log n + O(\log \log) labeling schemes supporting each of these functions was proven, with the most recent being ancestry [Fraigniaud and Korman, STOC '10]. Several multi-functional labeling schemes also enjoy lower or upper bounds of logn+Ω(loglogn)\log n + \Omega(\log \log n) or logn+O(loglogn)\log n + O(\log \log n) respectively. Notably an upper bound of logn+5loglogn\log n + 5\log \log n for adjacency+siblings and a lower bound of logn+loglogn\log n + \log \log n for each of the functions siblings, ancestry, and connectivity [Alstrup et al., SODA '03]. We improve the constants hidden in the OO-notation. In particular we show a logn+2loglogn\log n + 2\log \log n lower bound for connectivity+ancestry and connectivity+siblings, as well as an upper bound of logn+3loglogn+O(logloglogn)\log n + 3\log \log n + O(\log \log \log n) for connectivity+adjacency+siblings by altering existing methods. In the context of dynamic labeling schemes it is known that ancestry requires Ω(n)\Omega(n) bits [Cohen, et al. PODS '02]. In contrast, we show upper and lower bounds on the label size for adjacency, siblings, and connectivity of 2logn2\log n bits, and 3logn3 \log n to support all three functions. There exist efficient adjacency labeling schemes for planar, bounded treewidth, bounded arboricity and interval graphs. In a dynamic setting, we show a lower bound of Ω(n)\Omega(n) for each of those families.Comment: 17 pages, 5 figure

    Parallel Metric Tree Embedding based on an Algebraic View on Moore-Bellman-Ford

    Full text link
    A \emph{metric tree embedding} of expected \emph{stretch~α1\alpha \geq 1} maps a weighted nn-node graph G=(V,E,ω)G = (V, E, \omega) to a weighted tree T=(VT,ET,ωT)T = (V_T, E_T, \omega_T) with VVTV \subseteq V_T such that, for all v,wVv,w \in V, dist(v,w,G)dist(v,w,T)\operatorname{dist}(v, w, G) \leq \operatorname{dist}(v, w, T) and operatornameE[dist(v,w,T)]αdist(v,w,G)operatorname{E}[\operatorname{dist}(v, w, T)] \leq \alpha \operatorname{dist}(v, w, G). Such embeddings are highly useful for designing fast approximation algorithms, as many hard problems are easy to solve on tree instances. However, to date the best parallel (polylogn)(\operatorname{polylog} n)-depth algorithm that achieves an asymptotically optimal expected stretch of αO(logn)\alpha \in \operatorname{O}(\log n) requires Ω(n2)\operatorname{\Omega}(n^2) work and a metric as input. In this paper, we show how to achieve the same guarantees using polylogn\operatorname{polylog} n depth and O~(m1+ϵ)\operatorname{\tilde{O}}(m^{1+\epsilon}) work, where m=Em = |E| and ϵ>0\epsilon > 0 is an arbitrarily small constant. Moreover, one may further reduce the work to O~(m+n1+ϵ)\operatorname{\tilde{O}}(m + n^{1+\epsilon}) at the expense of increasing the expected stretch to O(ϵ1logn)\operatorname{O}(\epsilon^{-1} \log n). Our main tool in deriving these parallel algorithms is an algebraic characterization of a generalization of the classic Moore-Bellman-Ford algorithm. We consider this framework, which subsumes a variety of previous "Moore-Bellman-Ford-like" algorithms, to be of independent interest and discuss it in depth. In our tree embedding algorithm, we leverage it for providing efficient query access to an approximate metric that allows sampling the tree using polylogn\operatorname{polylog} n depth and O~(m)\operatorname{\tilde{O}}(m) work. We illustrate the generality and versatility of our techniques by various examples and a number of additional results

    A distributed algorithm to find k-dominating sets

    Get PDF
    We consider a connected undirected graph G(n,m)G(n,m) with nn nodes and mm edges. A kk-dominating set DD in GG is a set of nodes having the property that every node in GG is at most kk edges away from at least one node in DD. Finding a kk-dominating set of minimum size is NP-hard. We give a new synchronous distributed algorithm to find a kk-dominating set in GG of size no greater than n/(k+1)\lfloor n/(k+1)\rfloor. Our algorithm requires O(klogn)O(k\log^*n) time and O(mlogk+nlogklogn)O(m\log k+n\log k\log^*n) messages to run. It has the same time complexity as the best currently known algorithm, but improves on that algorithm's message complexity and is, in addition, conceptually simpler.Comment: To appear in Discrete Applied Mathematic

    Distributed Exact Shortest Paths in Sublinear Time

    Full text link
    The distributed single-source shortest paths problem is one of the most fundamental and central problems in the message-passing distributed computing. Classical Bellman-Ford algorithm solves it in O(n)O(n) time, where nn is the number of vertices in the input graph GG. Peleg and Rubinovich (FOCS'99) showed a lower bound of Ω~(D+n)\tilde{\Omega}(D + \sqrt{n}) for this problem, where DD is the hop-diameter of GG. Whether or not this problem can be solved in o(n)o(n) time when DD is relatively small is a major notorious open question. Despite intensive research \cite{LP13,N14,HKN15,EN16,BKKL16} that yielded near-optimal algorithms for the approximate variant of this problem, no progress was reported for the original problem. In this paper we answer this question in the affirmative. We devise an algorithm that requires O((nlogn)5/6)O((n \log n)^{5/6}) time, for D=O(nlogn)D = O(\sqrt{n \log n}), and O(D1/3(nlogn)2/3)O(D^{1/3} \cdot (n \log n)^{2/3}) time, for larger DD. This running time is sublinear in nn in almost the entire range of parameters, specifically, for D=o(n/log2n)D = o(n/\log^2 n). For the all-pairs shortest paths problem, our algorithm requires O(n5/3log2/3n)O(n^{5/3} \log^{2/3} n) time, regardless of the value of DD. We also devise the first algorithm with non-trivial complexity guarantees for computing exact shortest paths in the multipass semi-streaming model of computation. From the technical viewpoint, our algorithm computes a hopset G"G" of a skeleton graph GG' of GG without first computing GG' itself. We then conduct a Bellman-Ford exploration in GG"G' \cup G", while computing the required edges of GG' on the fly. As a result, our algorithm computes exactly those edges of GG' that it really needs, rather than computing approximately the entire GG'

    Locally Optimal Load Balancing

    Full text link
    This work studies distributed algorithms for locally optimal load-balancing: We are given a graph of maximum degree Δ\Delta, and each node has up to LL units of load. The task is to distribute the load more evenly so that the loads of adjacent nodes differ by at most 11. If the graph is a path (Δ=2\Delta = 2), it is easy to solve the fractional version of the problem in O(L)O(L) communication rounds, independently of the number of nodes. We show that this is tight, and we show that it is possible to solve also the discrete version of the problem in O(L)O(L) rounds in paths. For the general case (Δ>2\Delta > 2), we show that fractional load balancing can be solved in poly(L,Δ)\operatorname{poly}(L,\Delta) rounds and discrete load balancing in f(L,Δ)f(L,\Delta) rounds for some function ff, independently of the number of nodes.Comment: 19 pages, 11 figure

    Choptuik scaling in six dimensions

    Full text link
    We perform numerical simulations of the critical gravitational collapse of a spherically symmetric scalar field in 6 dimensions. The critical solution has discrete self-similarity. We find the critical exponent \gamma and the self-similarity period \Delta.Comment: 8 pages, 3 figures RevTe

    Minority Becomes Majority in Social Networks

    Full text link
    It is often observed that agents tend to imitate the behavior of their neighbors in a social network. This imitating behavior might lead to the strategic decision of adopting a public behavior that differs from what the agent believes is the right one and this can subvert the behavior of the population as a whole. In this paper, we consider the case in which agents express preferences over two alternatives and model social pressure with the majority dynamics: at each step an agent is selected and its preference is replaced by the majority of the preferences of her neighbors. In case of a tie, the agent does not change her current preference. A profile of the agents' preferences is stable if the preference of each agent coincides with the preference of at least half of the neighbors (thus, the system is in equilibrium). We ask whether there are network topologies that are robust to social pressure. That is, we ask if there are graphs in which the majority of preferences in an initial profile always coincides with the majority of the preference in all stable profiles reachable from that profile. We completely characterize the graphs with this robustness property by showing that this is possible only if the graph has no edge or is a clique or very close to a clique. In other words, except for this handful of graphs, every graph admits at least one initial profile of preferences in which the majority dynamics can subvert the initial majority. We also show that deciding whether a graph admits a minority that becomes majority is NP-hard when the minority size is at most 1/4-th of the social network size.Comment: To appear in WINE 201
    corecore